LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

PMT1MC06 - PROBABILITY THEORY AND RANDOM PROCESSES

Dat	te: 03-05-2025 Dept. No.	Max. : 100 Marks	
Time: 09:00 AM - 12:00 PM			
SECTION A – K1 (CO1)			
	Answer ALL the questions	$(5 \times 1 = 5)$	
1	Answer the following		
a)	If a pair of dice is tossed and X denotes the sum of the numbers on them, then discover the expectation of X.		
b)	Write the formula for the partial correlation coefficient between x_2 and x_3 with respect to x_1 .		
c)	State invariance property of consistent estimator.		
d)	Define statistical hypothesis.		
e)	Recall the concept of autocorrelation.		
SECTION A – K2 (CO1)			
	Answer ALL the questions	$(5 \times 1 = 5)$	
2	MCQ		
a)	For two random variables X and Y, $var(aX + bY)$ is equal to		
	(i) $a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab \ Cov(X, Y)$		
	(ii) $a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab \gamma \sigma_X \sigma_Y$		
	(iii) Both (i) and (ii)		
	(iv) None		
b)	If the regression lines are perpendicular to each other, then the value of γ is		
- /	(i) -1 (ii) +1 (iii) 0 (iv) None		
c)			
	(i) unbiased (ii) consistent (iii) most efficient (iv) None		
d)			
	(i) α (ii) β (iii) $1 - \alpha$ (iv) $1 - \beta$		
e)	Which of the following is not true?		
	(i) A second order stationary process is also first order stationary		
	(ii) For a second order stationary process, the autocorrelation function is a function of time difference		
	(iii) The wide sense stationary process is also known as strongly stationary process		
(iv) A first order stationary random process has a constant mean.			
SECTION B – K3 (CO2)			
	Answer any THREE of the following	$(3 \times 10 = 30)$	
3	State and prove Khintchin's theorem.		
4	In 10 areas, the infant-mortality (y) and birth rates (x) are obtained as follows. Calculate the correlation		
	coefficient.		
	X 22.9 17.8 20.8 21.3 20.7 20.9 17		
	Y 44 46 56 42 32 47 38	45 41 52	
5	State and prove the sufficient conditions for consistent estimators.		
6	In a shipment of 10 articles, θ are defective. The hypothesis H_0 : $\theta = 5$ is rejected in favour H_1 : $\theta = 4$		
	if (i) two articles selected at random with replacement are both of the same type either defective or		

	non-defective; or (ii) if two particles selected at random with replacement are having the combination		
	of one defective and one non-defective. Determine the size of the critical regions and power of the		
	test in both the cases.		
7	Show that the random process $X(t) = A \cos(\omega t + \theta)$ is wide-sense stationary, where A and ω are		
	constants and θ is uniformly distributed on the interval $(0,2\pi)$.		
SECTION C – K4 (CO3)			
	Answer any TWO of the following $(2 \times 12.5 = 25)$		
8	State and prove weak law of large numbers. In addition, discuss its application through an example.		
9	Show that the coefficient of correlation γ between two variables x and y is $\gamma = \frac{(\sigma_x^2 + \sigma_{y-}^2 \sigma_{x-y}^2)}{2\sigma_x\sigma_y}$. Apply		
	this result in calculating the coefficient of correlation between heights (in inches) of brothers and		
	sisters for the following data:		
	Family No 1 2 3 4 5 6 7 8 9 10 11		
	Brother (x) 71 68 66 67 70 71 70 73 72 65 66		
	Sister (y) 69 64 65 63 65 62 65 64 66 69 62		
10			
	(i) The population mean, when population variance is known.		
	(ii) The population variance, when population mean is known.		
	(iii) The simultaneous estimation of both the population mean and the population variance.		
11			
	(iii) stationary process (iv) Deterministic and (v) Non-deterministic.		
SECTION D – K5 (CO4)			
	Answer any ONE of the following $(1 \times 15 = 15)$		
12			
	lemma.		
13	Explain the four classes of random processes through relevant real-world examples.		
SECTION E – K6 (CO5)			
	Answer any ONE of the following $(1 \times 20 = 20)$		
14	Construct a problem related to a music event, and then apply the rank correlation method to study the		
	similarity in music taste among three judges evaluating 12 participants.		
15	Construct three estimators for a random sample (X_1, X_2, X_3) of size 3 which is drawn from a normal		
	population with mean μ and variance σ^2 . Also, verify they are unbiased or not? Further, determine		
	the best estimator.		
	•		